Matching and Classification of Images Using The Space of Image Graphs

نویسندگان

  • Dohyung Seo
  • Jeffrey Ho
  • Baba C. Vemuri
چکیده

This paper proposes a geometric approach for comparing tensor-valued images (tensor fields) that is based on the idea of matching intrinsically low-dimensional shapes embedded in a higher-dimensional ambient space. More specifically, instead of regarding the tensor fields as tensor-valued functions defined on a given (image) domain, we consider their image graphs. These tensorial image graphs can naturally be regarded as submanifolds (shapes) in an ambient space that is the cartesian product of their domain and the space of tensors. With this viewpoint, comparisons between tensor fields can naturally be formulated as comparisons between their corresponding shapes, and an intrinsic comparison measure can be developed based on matching these low-dimensional shapes. The proposed approach offers great conceptual clarity and transparency, and thorny issues such as parametric invariance and symmetric registration can be handled effortlessly in this novel framework. Furthermore, we show that the resulting variational framework can be satisfactorily optimized using a gradient descent-based method, and the computed similarities can be used as the affinity measures in a supervised learning framework to yield competitive results on challenging classification problems. In particular, experimental results have shown that the proposed approach is capable of producing impressive results on several classification problems using the OASIS image database, which include classifying the MR brain images of Alzheimer’s disease patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

Optimizing image steganography by combining the GA and ICA

In this study, a novel approach which uses combination of steganography and cryptography for hiding information into digital images as host media is proposed. In the process, secret data is first encrypted using the mono-alphabetic substitution cipher method and then the encrypted secret data is embedded inside an image using an algorithm which combines the random patterns based on Space Fillin...

متن کامل

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Two New Methods of Boundary Correction for Classifying Textural Images

With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011